P3.13-5)^{fe} The driver of car A is traveling along a straight road with a speed of 15 m/s while accelerating at 1 m/s² when he notices car B directly to his right as shown. If at this instant car B is traveling around a 90-m curve with a speed of 5 m/s while slowing down at a rate 1 m/s², what acceleration does car B appear to have to the driver of car A?

P3.13-5

Given:

_	٠			-1	
-	ı	r	11	٦	•
<u>-</u>	ı		١,	<u> </u>	•

Solution:

Velocity

Write down the velocity of Car A and Car B.

 $\mathbf{v}_A = \underline{\hspace{1cm}} \mathbf{i} + \underline{\hspace{1cm}} \mathbf{j}$

 $\mathbf{v}_B = \underline{\hspace{1cm}} \mathbf{i} + \underline{\hspace{1cm}} \mathbf{j}$

What is the velocity of Car B relative to Car A?

Acceleration

Write down the acceleration of car *A*.

 $\mathbf{a}_A = \underline{\hspace{1cm}} \mathbf{i} + \underline{\hspace{1cm}} \mathbf{j}$

Determine the acceleration of car B in n-t coordinates.

 $\mathbf{a}_B = \underline{\qquad} \mathbf{e}_t + \underline{\qquad} \mathbf{e}_t$

 $\mathbf{a}_B = \underline{\hspace{1cm}} \mathbf{i} + \underline{\hspace{1cm}} \mathbf{j}$

Calculate the acceleration of car B relative to car A.

$$\mathbf{v}_{B/A} = \underline{\qquad} \mathbf{i} + \underline{\qquad} \mathbf{j}$$

Remember units!

 $\mathbf{a}_{B/A} = \mathbf{i} + \mathbf{j}$